Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Despite its volatility the petroleum industry is still one of the leading sectors in the world economy in terms of revenue and job creation. The global oil and gas market size reached $5,870.13 billion in 2021 and there is optimism that it will surpass that mark in 2025 at a compound annual growth rate (CAGR) of 6%. To make this prediction possible it is important to ensure the continuous flow of oil and gas by implementing an efficient integrity management system to avoid pipeline failures.
Mercaptans are volatile organosulfur compounds produced in natural environments and together with H2S, constitute the most common sulfur-containing contaminants present in sour crude oil and natural gas condensate. One of the most viable options for removing low quantities of mercaptan, usually below 200 ppm, is the use of mercaptan scavengers. In particular, those scavengers referred to as nonregenerative because they react irreversibly to thiol species and convert them to a more inert form. They can be applied in batches in a liquid or solid form inside bubble towers or packed bed scrubbers but also via continuous direct injection into the produced fluids. Although in most cases the methods of screening H2S or mercaptan scavengers are the same, there is no detailed study in the literature of the experimental challenges associated with their use in the presence of a mixture of mercaptans and different test fluids. To address this issue, a laboratory apparatus was used to simulate an inline scavenger injection test. The system supplies a constant stream of a gas mixture comprised of methyl, ethyl, propyl, and isopropyl mercaptan at a fixed amount through the test fluid comprised of water or hydrocarbon until a steady state concentration in the fluid is achieved. By studying the solubility profiles of the mercaptan mixture in aqueous and hydrocarbon fluids the most adequate test conditions to perform the inline injection experiment including temperature, gas flow rate, and scavenger concentration were determined. This optimization process allowed us to simultaneously calculate the scavenger uptake of different chemistries for each alkyl mercaptan in one single test. The results provide a better view of the behaviour and efficiency of mercaptan scavengers in conditions closer to those found in the oilfield.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The corrosivity of four mercaptans and selected crude oil fractions were measured in lab tests. Conclusion: Mercaptan corrosion can contribute significantly to the total sulfur related corrosion in the temperature range 235–300°C, which agrees with observations of elevated temperature corrosion in refinery distillation equipment.