Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
For engineers and maintenance personnel who design, operate, and maintain large, multi–stage wastewater treatment plants (WWTP) Basics of corrosion of metals and degradation of non–metals, including concrete, and how to mitigate them. 3rd edition 2016 NACE E-Book
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Test results for four alloys in six different sour environments are presented. Alloys 625, 825, 316L and carbon steel were testing in sour gas with varying exposure to moisture at 280°C. Corrosion rates for each alloy over a 30 day period are measured from mass and thickness changes.
Electrochemical techniques enabling real-time survey of corrosion, such as multi-electrode arrays sensors (MASS) and linear polarization resistance (LPR) were used to detect the differences in electrochemical behavior of two stainless steels.
Sweet corrosion of Oil Country Tubular Goods (OCTG) is a major concern in the oil and gas industry. This paper will present the experimental results and discuss the effects of temperature and Chromium content in OCTG on corrosion rate.
To better understand and quantify the effect of crevice geometry, several crevice configurations simulating service conditions were evaluated including flanges assembled with gaskets, bolts mounted with nuts to plates, and the standard CREVCORR-type crevice formers.
Thermal and/or hydrolytic stability behavior of solutions of carboxylic acids. This work thermally stressed aqueous solutions of carboxylic acids and analyzed the resulting solution and headspace. Expected corrosion impact on distillation overheads and brine rundown systems.
An experimental study of corrosion of carbon steel in the presence of H2S, CO2 and acetic acid has been carried out. H2S and CO2 partial pressures up to 10 bar each were applied, with temperatures of 25 and 90oC.
The present paper reports results of analyses that address the influence of physical and modeling variables upon failure projections.
In the hydrocarbon industry, internal corrosion is one of the most worrisome threats because it can cause catastrophic failures in the pipelines and cause harm to people and the environment. Some authors mention that internal corrosion damage is due to components such as H2S, CO2, mercaptans, sulfate-reducing bacteria, and suspended solids. These variables lead to thickness losses in the ducts, which contributes to the increase in the rate of deterioration.1 2 3 study reported by Askari et al, shows that the internal corrosion rate can be so high that it can consume the 3-6mm allowed for the pipeline in a year, which leads to irreparable economic losses.4
The primary objective of this study was to investigate iron carbonate (FeCO3) formation mechanisms on ferritic-pearlitic carbon steel corroding in a CO2 saturated aqueous solution near iron carbonate saturation, with particular emphasis on the effect of solution pH.
In the present study, the effect of temperature on the adsorption/desorption kinetics and thermodynamics of diethylenetriamine talloil fatty acid imidazoline (DETA/TOFA imidazoline) is studied on a gold coated crystal using a quartz crystal microbalance (QCM) in a CO2 saturated 1wt% NaCl aqueous solution.
Pitting corrosion susceptibility of UNS N06600, UNS N06690 and UNS N08800 was studied in pure 1 M NaCl with and without Na2S2O3 additions. The alloys were tested in the as-received (AR), solution annealed (SA) and aged (SA + A) conditions.