Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
An indirect impedance technique is assessed as a possible method to detect corrosion within external post-tensioned bridge tendons. The method aims to extract the impedance of the steel-grout interface from the impedance measured at the surface of the grout.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper presents a case study (an abutment wall built in 1961)for updating the corrosion probability with half-cell potential measurement data.
Convolutional deep neural networks are one of the main machine learning techniques applied to computer vision and object recognition tasks. Currently, they are very popular due to their proven effectiveness in solving image classification tasks and their significant theoretical and practical importance to the advancement of the deep learning field. Examples of successful image classification networks developed are AlexNet, VGG, and GoogLeNet.1,2,3
The galvanic probe used in corrosion detection & monitoring in the petroleum production industry. Background and theory of galvanic probes, probe configurations, placement and maintenance.