Save 20% on select best sellers with code MONSTER24 - Shop The Sale Now
Thermal Imaging, or Infrared Thermography, is an evaluation technique that has been used in the general construction industry for many years. Often times this is used to evaluate the degree of heat loss in a structure for insulation purposes, or for detecting water leaks behind a closed wall area. Some recent cases have also shown this technique applicable for testing strength of concrete structures.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The performance of coatings applied to cementitious building walls is a function of both the coating itself and the integrity of the building wall assembly.
This paper presents the diagnostic work undertaken to determine the cause of failing coating and spalling block on the exterior of a commercial building in northern Illinois. The field assessment methods used to diagnose the problems including non-destructive and destructive methods for determining moisture content in the masonry, infrared thermography, and visual assessments are described.
Self-healing coatings have been promising due to their automatic recovering functions, which can extend the coating lifetime with lower maintenance costs. One of the most effective strategies to achieve self-healing property is to encapsulate healing agents inside microcapsules and integrate the microcapsules into the coating matrix.
Boiler system is one of the most critical systems for a utility plant. A utility plant had experienced high percentages of boiler downtime owing to boiler tube sheet cracking failures. Investigations carried out revealed high stress at the tube-to-tube sheet joint in the boiler fire-side entrance. Tube-to-tube sheet joints at the boiler fire-side entrance had been fabricated by strength welding and without any expansion. The strength welded joint had created undue stress leading to cracking of the weld joint by thermal expansion. A higher quality expanded joint consisting of expanding, flaring and seal welding the fire-side entrance was implemented during the re-tube process. The utility plant has now zero downtime due to boiler tube failure. This article summarizes the description and history of failures with the boiler at the utility plant; investigations and corrective actions carried out; and the present improved condition of the boilers.