Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
This paper describes a Joint Industry Project designed to test existing understanding of the mechanism of sensitisation to intergranular corrosion or stress corrosion cracking (IGSCC) of welded supermartensitic stainless steels. Existing data were reviewed and two series of welding trials and corrosion tests were undertaken.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The effect of post weld heat treatment (PWHT) was studied on a variety of microstructures of the pressure vessel steel (ASTM A516) ranging from the ferrite/pearlite to the tempered bainite obtained by different cooling processes.
Caustic stress corrosion cracking (SCC) is known to occur in carbon steels under tensile stress and exposure to caustic solutions from 115°F to boiling temperatures. Alternating wet and dry conditions tend to increase SCC susceptibility. Localized overheating of the metal, such as solar radiation, heat tracing, steam outs and excursions should also be considered. Caustic SCC was first reported in 1980 when the top of a continuous kraft digester vessel blew off in Pine Hill, Alabama. It was found that the tensile residual stresses present in non-stress relieved carbon steel weld seams and the corrosive environment (caustic) were responsible for the cracking