Important: AMPP System Update February 27 - March 11 – Limited Access to AMPP Digital Services. Act Now to Avoid Disruptions! - Learn More
The use of glutaraldehyde for decontamination and preservation of water systems involves important considerations relevant to its ecotoxicity profile, biodegradation properties and safe handling and storage guidelines. This paper will review data from ecotoxicity studies, in addition to biodegradability characteristics
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Observations and guidelines to conduct hydrostatic pressure tests of pipelines and/or process equipment. Concerns for hydrostatic pressure tests relate to the water itself, including any suspended solids, dissolved oxygen, or any Sulfate Reducing Bacteria (SRB) or Acid Producing Bacteria (APB) present in the test water.
An operating company was concerned that its biocide and corrosion mitigation strategy was not sufficient to control corrosion in their pigging operations across the Gulf Coast of Texas. They provided water samples from several pigging access points that were heavily contaminated with SRBs, APBs, black deposits and oil. H2S was present in most of the samples suggesting a heavy presence of SRBs. They suspected that the black deposits were most likely FeS caused by the presence of microorganisms interacting with their pipelines. Indeed, culture vial tests (sometimes referred to as “bug bottles”) proved that the samples were heavily contaminated with microorganisms.
Biocides play a critical role in the oil and gas industry as they are used as chemical additives during drilling, completions, and water-flooding operations. Their primary purpose is to prevent various problems such as the formation of biogenic H2S, microbiologically influenced corrosion (MIC), and reservoir plugging caused by microbial growth. With advancements in horizontal drilling and well completion technologies, the economic exploration of unconventional energy resources has become possible alongside traditional drilling methods.
Oil and gas operations worldwide are impacted by the presence of microorganisms. A variety of microorganisms can be found in the oilfield, dependent on the type of operation, geology, location, water source and water treatment utilized. Biocides are used in all stages of oil and gas development to control microorganisms and their detrimental impacts on production such as corrosion, biofouling, and souring. A wide number of biocides are used to control microorganisms, ranging from oxidizing biocides that react quickly but leave no residual activity, to preservatives which act slowly, but provide antimicrobial activity for weeks or months at a time. The spectrum of biocides used in oil and gas are covered by several excellent reviews and will not be detailed in this paper.