Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We describe the advancement of an activity-based quantitative polymerase chain reaction (qPCR) assay which can distinguish live from dead corrosion influencing microorganisms in oil and gas pipeline environments. We discuss the limitations and possible future optimization methods for Propidium monazide-qPCR techniques in the industry.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
To study the effect of repeated biocide treatments to mitigate microbiologically influenced corrosion (MIC), we used a Center for Disease Control (CDC) biofilm reactor to generate and remediate corrosive biofilms on carbon steel coupons grown from a produced water sample from a salt water disposal (SWD).
In this study, sequencing was performed both with and without 16S rDNA gene amplification. Following bioinformatics testing, the resulting data showed dramatically different results when comparing the 16S sequence data to the shotgun-based sequence data.