Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
A study on the corrosivity of field produced water obtained from in-situ oil sands operators to UNS G10180 carbon steel. Rotating cylinder electrode (RCE) and rotating cage autoclave (RCA) systems were used as test methods. The susceptibility of the carbon steel to pitting was also evaluated.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Sweet corrosion of Oil Country Tubular Goods (OCTG) is a major concern in the oil and gas industry. This paper will present the experimental results and discuss the effects of temperature and Chromium content in OCTG on corrosion rate.
Produced fluids in O&G sector in general do not contain oxygen, but oxygen ingress can occur at locations. Examples of such spaces can include but not limited to vapor space in tanks, custody transfers, injection pumps, vapor recovery systems, operating pumps with faulty seals, pipelines that are not properly purged of oxygen during commissioning operations, gas lift operations, methanol use or pigging operations.This contamination of O2 in sweet/sour systems can lead to oxygen induced corrosion and may cause high general and pitting corrosion rates and failures.
A fit for purpose qualification of new corrosion inhibitors was carried out for in a gas and condensate field. The depth of production well is 4,500 m and the bottom hole temperature and pressure are 180ºC and 50 MPa respectively. The methodology and result of the inhibitor evaluation under a sweet condition was summarized. Two brands of corrosion inhibitors had been used each for production tubing and flowline in the field. New corrosion inhibitors were evaluated for the both applications. The corrosion inhibitor efficiency for high shear service and the adhesion tendency were evaluated with a rotating cage autoclave and a dip and drip experiment respectively. In order to evaluate the tendency of emulsion forming, oil, brine and an inhibitor were poured into a centrifuge tube and it was shaken intensely. Gas chromatograph - mass spectrometer (GC-MS) and Fourier transform infrared spectroscopy (FT-IR) were studied to measure the residual amount of inhibitor. Finally, the field trial was conducted with a new inhibitor. The new inhibitor was adopted successfully for the both services. The risk of emulsion forming became lower because the mixing of two brands of inhibitors was avoided. Reducing the number of the chemicals contributed to reduction of the operation cost too.