Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Two types of impressed current cathodic protection and a sacrificial method were used to protect over 100000m2 of reinforced concrete caissons and deck slab of a new ship repair yard. This paper describes the CP and monitoring systems used and compares the monitoring results from the different types of system and probe.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Alloys test results establish the relationship between electrochemical, chemical & metallurgical properties of magnesium, aluminum and zinc alloys and achieve higher and more stable current consumption of sacrificial anodes.
Corrosion is a natural phenomenon, and thus can never be completely eliminated; however, it is a misconception nothing can be done. Estimates show 25-30% of steel corrosion could be eliminated if proper corrosion protection methods were employed. Corrosion can simplistically be viewed as the tendency for the metal, after production and shaping, to revert back to its lower, more natural energy state of ore. This tendency is known as the Law of Entropy.