Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Hard spot cracking is a type of sulfide stress cracking (SSC), which is a common type of HydrogenEmbrittlement (HE). The embrittlement by SSC is attributed to the hydrogen atoms (H+), as corrosion byproduct, that permeate/diffuse through the metal with the presence of H2S. Then, when hydrogen atoms get entrapped at specific microstructural configurations, material ductility will be impaired and material will be embrittled [2].
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper details with the unexpected cracking encountered in the outlet nozzles of all three reactors for Platformer unit, during a scheduled shutdown. The unit was commissioned in 1957 and the reactors metallurgy is as per withdrawn ASTM standard, A301 Gr. B (1Cr-1/2Mo). The isolated cracks were located at the upstream edge of the inset nozzle and running vertically down. The cracking in the high-pressure fixed bed reactor outlet nozzles was successfully repaired in-situ. This paper reviews the circumstances which led to these failures and highlights the lessons learned from each failure.
Concrete will crack – that is a fact. When cracks appear, they are dynamic or static, and structural or non-structural. If the crack is static, non-structural, and does not leak, epoxies are great to restore design strength. However, since concrete constantly shrinks, expands, and often leaks, the use of a flexible polyurethane resin to permanently seal active leaks is the optimum choice to create a leak-free environment.
Liquid Metal Embrittlement (LME) phenomenon occurs when the certain molten metals wet the specific alloys, causing drastic ductility reduction that normally is associated with the formation of an intergranular crack that is sudden and brittle in nature. High tensile stress is also known to promote cracking; however, cracks may develop merely by contacting molten metal with a susceptible alloy as there is only a small amount of low-melting-point metal required to cause LME.
The goal of the Paris Agreement is to limit global warming to below 2°C, preferably 1.5°C, compared to pre-industrial levels.1 While the world is slowly transitioning to more sustainable energy sources to reach this target, one of the ways to reduce the CO2 in the atmosphere is to capture it and store it in depleted gas fields. According to the IOGP1, the total number of CCS projects in Europe is 65 in 2022.2 The aim of these projects is to store around 60 MtCO₂/yr by 2030.
Steel rebars in concrete structures are usually protected from corrosion by a thin layer of passive film, which is formed due to the high alkalinity of concrete pore solution.1-2 However, this protective passive film could be damaged by penetration of chloride into concrete structures in marine environments or exposure to the use of de-icing salt for the removal of snow and ice in winter times.3 Penetration of chloride would impair the passive film locally and initiate pitting corrosion.
All three parts of ANSI/NACE MR0175/ISO 15156 with changes made to the 2009 edition and published in the 2015 edition marked for easy reference. The changes are clearly shown.
Review of cathodic protection (CP) technology used in Europe and the U.S. over the past decade to combat corrosion deterioration, including cracking, displacement, and spalling of stone and masonry.
Explores the trend of the increasing number of reported incidents of alkaline carbonate stress corrosion cracking (ACSCC) since the year 2000. Locations. Theories. Mitigation. Inspection. Industy survey results.
Published reports of laboratory tests and plant experience pertaining to the cracking of steels in wet H2S service. Environmental, fabrication, and metallurgical parameters involved in the cracking process.
HISTORICAL DOCUMENT.
This standard addresses the testing of metals for resistance to cracking failure under the combined action of tensile stress and corrosion in aqueous environments containing hydrogen sulfide (H2S). This phenomenon is generally termed sulfide stress cracking (SSC) when operating at room temperature and stress corrosion cracking (SCC) when operating at higher temperatures. In recognition of the variation with temperature and with different materials this phenomenon is herein called environmental cracking (EC). For the purposes of this standard, EC includes only SSC, SCC, and hydrogen stress cracking (HSC).
HISTORICAL DOCUMENT. Testing of metals subjected to tensile stresses for resistance to cracking failure in low-pH aqueous environments containing hydrogen sulfide (H2S). Covers sulfide stress cracking and stress corrosion cracking.