Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Effects of H2O and SO2 on oxidation in a CO2 environment. Experiments at 1 and 25 bar at 700° to 800°C in CO2, CO2+10%H2O and CO2+10%H2O+0.1%SO2. Alloys S30409, N07230, N07208 and superalloy N07247 exposed. Reaction products were characterized.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Results from novel transparent autoclave experiments. Carbon steel corrosion coupons were exposed to impurities levels within established specifications at simulated transport conditions (25 °C and 10 MPa of CO2).
This paper re-examines most public and in-house corrosion data on the effects of six typical impurities to advance the fundamental understanding of how pipeline steels corrode in sc-CO2 environments and identify knowledge gaps for further investigations.
CO2 captured from different sources for carbon capture and storage (CCS) will contain impurities. Although it is technologically possible to treat CO2 to near 100% purity in the gas conditioning process, it is preferable to have fewer rigid specifications to reduce both operational and capital costs. From a corrosion point of view, SOx, NOx, H2S, and O2 are considered to be the most aggressive impurities.
Cyclic polarization measurements were used to illustrate the corrosion and passive behavior of the stainless steels under the tail gas conditions. Electrochemical behavior of stainless steels in SO2-saturated solutions with various concentrations of Cl- and F- was also studied.