Save 20% on select best sellers with code MONSTER24 - Shop The Sale Now
As part of a project to develop a database of seawater corrosion resistance including resistance to microbiologically-influenced corrosion (MIC) seawater, MIC exposure tests of five stainless steel alloys were undertaken for three and six month durations.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Crevice corrosion affects the integrity of stainless steels used in oil and gas components exposed to seawater. In this work, the crevice corrosion resistance of a 22-Cr duplex and a 25-Cr super duplex stainless steels (UNS S31803 and UNS S32750, respectively) were investigated.
The effect of back shielding gas types and contained oxygen level on the corrosion resistance of welds was investigated for gas tungsten arc welding (GTAW) of UNS S32750 super duplex stainless steel (SDSS) pipes.
Study to assess pitting corrosion resistance of 316L ASS (UNS S31603) and 25%Cr SDSS (UNS S32750) in salt solutions containing dissolved oxygen(DO). The DO levels examined were: 20, 50, and 100ppb, and the concentration of chloride ions were up to 152g/L Cl-, at 50 and 60°C. The results are reported herein.