Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The carbon steel lines carrying brackish water associated with a heavy oil SAGD (Steam Assisted Gravity Drainage) operation in Northern Alberta experienced severe localized corrosion. This is a continuation of a previous study of similar failures at a similar facility.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper reviews a theoretical background of buffer solutions for stainless steel oil country tubular goods materials at laboratory corrosion test, and then the concept is applied to NACE-TM0177-based solution and modified solutions.
This work is aimed at determining the viability of oxygen-free copper as an engineering barrier of high-level radioactive waste containers.
Methodology to simulate actual oil and gas field condition in laboratory tests. A sulfide stress cracking test is carried out on 13% Cr stainless steel with various buffer solutions. Then, pH behavior was estimated. A suitable composition of the solution is proposed by using thermodynamic calculations.