Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
An unexpected explosion occurred in the vent line connecting at the top of a titanium reactor that was used to make a fire-retardant fabric. In this presentation the cause for this accident will be discussed based on the findings in examining samples from the vent line and the results of high-temperature tests.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper will discuss, examine, and conclude on the metallurgical differences and effectiveness between the centrifugal-cast silicon iron tubular anode and Die-cast silicon iron tubular anode based on the research and testing performed and reported by Independent Laboratory Testing.
With the development of a bimetallic tube with an inner tube made of zirconium (R60702) and an outer tube in UNS S31002, it was possible to manage the challenge to provide zirconium-level performance at an affordable price.
Mill-annealed coupons of UNS N10276, N06022 and N06035 alloys were heat-treated at different times and temperatures, then tested in ASTM G-28A solution followed by internal attack measurement through optical microscope.
Alloy N06044 was developed for applications in chemical process industry and coal fired boiler. In this paper, corrosion resistant properties of that alloy in acidic solutions are shown.
Different solutions are provided to the industry to avoid corrosion in demanding environments. It can bedone by optimization of process conditions, coating, and cathodic protection, for example. Another wayis to select material grades like stainless steel, nickel alloys, or zirconium and titanium to improve theequipment’s lifetime.
In the present study, corrosion tests were performed using both weight loss and electrochemical techniques for Ni-Cr-Mo (W) alloys in hydrochloric (HCl), sulfuric (H2SO4), nitric (HNO3) acids and their various combinations.
Traditional solutions for the chemical passivation of stainless steel are nitric acid based, with the addition of sodium dichromate as an inhibitor for precipitation hardened and free machining stainless steels. These passivation chemistries are difficult to handle from an environmental health and safety point of view, particularly the dichromate inhibited versions. Citric acid passivation has been pursued as a replacement for both nitric acid and inhibited nitric acid based chemistries for many years, and has been incorporated into consensus specifications such as ASTM A967 and SAE AMS2700.