Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Three layer polypropylene (3LPP) pipeline coatings failed prematurely in the oilfields of Abu Dhabi in the United Arab Emirates (UAE). A failure investigation and analysis into this phenomenon was instigated. The coating disbondment has been found to be due to high residual stress concentration and adhesion loss.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The paper reviews the history of Hydrogen Induced Stress Cracking (HISC) failures of duplex and super duplex stainless steels when deployed subsea and subject to CP at potentials around minus 1V.
X-Ray diffraction shows that - with hot or cold straightening - there is still a significant amount residual stresses existing in OCTG pipe bodies. A formula was proposed to include the effect of residual stress on determining the sour cracking resistance.
A comprehensive test program is described quantifying the HISC performance of retrieved superduplex stainless steel subsea components and, comparing the actual performance against the limits derived following DNV RP F112: 2008.
Steel structures are often galvanized to ensure durability in harsh environments. However, on occasion, incidents of cracking have occurred in galvanized structures that appear to be induced during the galvanizing process. Such cracking incidences produce a significant cost to the industry, in that repair procedures are often necessary to eliminate any flaws present directly after galvanizing.