Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Exposure tests were performed at normal and high pressure where CO2 is supercritical or in dense phase. The focus was set on the corrosion process of condensate as drops on the surface of carbon steels in CO2 with impurities at 278 K
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper attempts to compare the critical pitting temperature (CPT) for alloys when ASTM G150 is not applicable. By using MgCl2 as electrolyte, the boiling point is increased and the measuring zone for CPT is broader.
The current approach to corrosion severity prediction is to use long-term averages of environmental parameters (such as relative humidity, temperature, and pollutants), geographic features (such as coastal proximity), and witness coupon corrosion rates of indicator materials to classify an environment into one of a small number of severity categories. However, recent work has revealed that brief changes in environmental conditions—even those lasting only a few hours—can significantly affect total corrosion damage, and long-term averages of environmental conditions are not sufficient to accurately predict cumulative corrosion damage. To more accurately measure the corrosion damage from these short-term events, corrosion sensors are becoming increasingly popular. The frequent acquisition of data and increased measurement sensitivity are attractive features, however the data from these corrosion sensors is still difficult to interpret in many cases.
Marine environments can be very aggressive and present significant challenges in maintaining key infrastructure from the effects of corrosion. In Florida, thousands of bridges are in coastal areas and are continually, or periodically exposed to saltwater conditions. A clear majority of these bridges were constructed using steel reinforced concrete and are supported by precast pilings situated in saltwater, so for this reason, cathodic protection is a necessary strategy for controlling the effects of saltwater induced corrosion.
Toward the early 1980s, the Florida Department of Transportation (FDOT) began the evaluation of different approaches to control saltwater induced corrosion. Some of these included the use of integral pile jackets, specialty materials for concrete repairs, surface applied coatings and other innovative approaches utilizing galvanic anode technology. One such system was jointly developed with industry partners and sponsored by the Federal Highway Administration (FHWA) using integral pile jackets lined with expanded zinc mesh anodes to apply cathodic protection. This innovative approach provides for the problem of concrete repair while at the same time stopping the on-going process of corrosion both combined in one application. Both laboratory and field trials validated the benefits to this approach and confirmed that the system can mitigate corrosion and extend the useful service life of pilings by more than 20 years.
Corrosion is defined as the degradation of a material or its properties due to a reaction with the environment and is one of the most common pipeline integrity threats for operators. External corrosion may be visually inspected during excavation; however, due to accessibility, additional non-destructive examination (NDE) methods must be utilized to identify the presence and severity of internal corrosion.
Understanding the chemistry and electrical properties of how corrosion occurs aids in mitigating the presence of corrosion, specifically internal corrosion.
Previous papers by two of the authors have examined 1) the futility of attempting to correlate accelerated corrosion testing results to real world corrosion observations, and 2) how corrosion testing is useful as an indicator of performance without the need for real world correlation and what may be expected in a corrosive environment and how these results can be usefully applied in the real world. This third paper in the trilogy, examines a specific attribute of accelerated corrosion testing, that being the utility of wet/dry cycling testing versus continuous fog methods.