Save 20% on select best sellers with code MONSTER24 - Shop The Sale Now
New in-situ HIC measurement method to make the connection between HIC propagation behavior and microstructure. Based on an automatic ultrasonic wave inspection system and a scanning electron microscopy (SEM) observation.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
In the oil and gas industry, oil country tubular goods or line pipes are exposed to wet H2S environments (sour environments) in some cases. The presence of H2S in the sour environment enhances hydrogen entry into the steel due to the catalytic action of H2S. The absorbed hydrogen enhanced by H2S affects hydrogen embrittlement. Hydrogen-induced cracking (HIC) is a hydrogen embrittlement phenomenon observed in sour conditions.
The manufacturing and field experience of high strength low alloy (HSLA) steel plates produced by Thermo-Mechanical Controlled Process (TMCP) are well defined in industry standards and literature. The TMCP method consists of a well-prescribed rolling pass schedule followed by accelerated cooling that leads to a fine-grain microstructure with the desired mechanical properties of the produced plates.Quite recently, this TMCP process resulted in detrimental local variations with hidden hardness variations on pipe ID, so-called Local hard Zones (LHZ).
Applicability of High Strength Line Pipe solution has been evaluated by conducting 30-day Hydrogen Induced Cracking (HIC) tests. Reproducibility of corrosion loss and HIC damage was investigated in comparison with those of the conventional solution, specified by NACE TM0284-2016, Solution C.