Search
Filters
Close

Pitting And Crevice Corrosion Resistance Of A Direct Metal Laser Sintered (DMLS) 316L Stainless Steel In Artificial Seawater

Product Number: 51321-17006-SG
Author: Claudia Prieto; Marc Singer; David Young
Publication Date: 2021
$0.00
$20.00
$20.00

The use of 2%-Mo containing austenitic stainless steels is a common practice for marine applications, such as for the fabrication of fuel nozzles and impellers. Such geometrically complex parts can be manufactured more efficiently using additive manufacturing techniques, such as the direct metal laser sintering process (DMLS). However, research has revealed that 316-type stainless steels are not entirely exempt from undergoing
localized attack. Environmental factors, such as chloride content, temperature and oxygen levels are key governing factors limiting the application of 2%-Mo containing austenitic stainless steels. Moreover, the susceptibility to localized attack for additively manufactured products, such as 316L DMLS, has been postulated to significantly increase due to residual porosity, surface asperity and microstructural defects inherent to the additive manufacturing process. Since the additive manufacturing of geometrically complex parts confers advantages in terms of design, it is essential to determine if their performance against corrosion would compromise their real-world applicability. By using aerated artificial seawater per ASTM D1141 and cyclic potentiodynamic polarization (CPP), the metastable pitting characteristics of a 316L stainless steel manufactured by the DMLS process was characterized. Moreover, the effect of an argon quenched heat
treatment was explored. A cold-rolled 316L stainless steel, as-received and heat-treated, was used as a reference for this study. Results indicated that the heat treatment increased the resistance to pitting initiation of the 316L stainless steel made by DMLS as inherent microstructural defects were healed.

The use of 2%-Mo containing austenitic stainless steels is a common practice for marine applications, such as for the fabrication of fuel nozzles and impellers. Such geometrically complex parts can be manufactured more efficiently using additive manufacturing techniques, such as the direct metal laser sintering process (DMLS). However, research has revealed that 316-type stainless steels are not entirely exempt from undergoing
localized attack. Environmental factors, such as chloride content, temperature and oxygen levels are key governing factors limiting the application of 2%-Mo containing austenitic stainless steels. Moreover, the susceptibility to localized attack for additively manufactured products, such as 316L DMLS, has been postulated to significantly increase due to residual porosity, surface asperity and microstructural defects inherent to the additive manufacturing process. Since the additive manufacturing of geometrically complex parts confers advantages in terms of design, it is essential to determine if their performance against corrosion would compromise their real-world applicability. By using aerated artificial seawater per ASTM D1141 and cyclic potentiodynamic polarization (CPP), the metastable pitting characteristics of a 316L stainless steel manufactured by the DMLS process was characterized. Moreover, the effect of an argon quenched heat
treatment was explored. A cold-rolled 316L stainless steel, as-received and heat-treated, was used as a reference for this study. Results indicated that the heat treatment increased the resistance to pitting initiation of the 316L stainless steel made by DMLS as inherent microstructural defects were healed.

Product tags
Also Purchased
Picture for 05277 Preferential Weld Corrosion: Effects of
Available for download

05277 Preferential Weld Corrosion: Effects of Weldment Microstructure and Composition

Product Number: 51300-05277-SG
ISBN: 05277 2005 CP
Author: Chi-Ming Lee and Paul Woollin, TWI Ltd.
$20.00
Picture for 10308 Sour Service Limits of Dual-Certified 316/316L Austenitic Stainless Steel and Weldments
Available for download

10308 Sour Service Limits of Dual-Certified 316/316L Austenitic Stainless Steel and Weldments

Product Number: 51300-10308-SG
ISBN: 10308 2010 CP
Author: Briony K Holmes and Stuart Bond
Publication Date: 2010
$20.00
Picture for Challenges in Pre-Qualification Corrosion Testing of CRAs based on ASTM G48
Available for download

51314-4272-Challenges in Pre-Qualification Corrosion Testing of CRAs based on ASTM G48

Product Number: 51314-4272-SG
ISBN: 4272 2014 CP
Author: Troels Mathiesen
Publication Date: 2014
$0.00