Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
This paper will address conditions assessment, test procedures and criteria necessary to make informed decisions on overcoating or not overcoating an aged coating system. It will cover rating of adhesion and film integrity, determination of overcoating risk factors and a selection process for appropriate overcoat systems.
Whether or not overcoating is a feasible alternative to complete removal and repainting depends a great deal on the condition of the existing coating system. The amount of corrosion present, number of coats, total film thickness, adhesion to the substrate, adhesion between coats, and exposure conditions are all factors to consider before making an overcoat or complete removal decision. Due to the economic costs associated with complete removal of aged existing coating systems, including coatings which may or may not contain lead or other hazardous materials, overcoating can offer an economical advantage. However, there are risks involved with overcoating which can lead to costly failures. Properly assessing the condition of existing coatings can help ensure the proper decision is made. This paper will address conditions assessment, test procedures and criteria necessary to make informed decisions on overcoating or not overcoating an aged coating system. It will cover rating of adhesion and film integrity, determination of overcoating risk factors and a selection process for appropriate overcoat systems.
This presentation will compare and contrast several anti-corrosive tidal zone coatings developed under a Navy SBIR program. Requirements for the coating included no VOC’s, surface tolerance to chlorides and water, fast cure to avoid washout by tides and waves, and thick build properties. Various trials of the material on dock sheet pilings and cooling tower fallout zones will be illustrated as well as accelerated lab test data.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Testing cured coatings for flaws and defects is often a crucial part of the acceptance process for a coating assessed against its specification. This is particularly the case for pipeline and storage tank coatings and for coatings applied for corrosion protection, where discontinuities in the coating can lead to premature failure.
Odor control systems are critical to handling and treating foul air in wastewater collection systems and treatment plants. However, odor control systems do not stop corrosion related to biogenic sulfide formation of sulfuric acid as some engineers would have you believe. Conversely if you have an odor problem you also typically have a corrosion problem, and each problem requires separate control strategies.