Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
At present, with the increasing in demand for natural gas, all gas production companies are increasing their efforts in natural gas exploration and development. Corrosion is one of the problems during the wet gas transporting, and this can be solved by adding corrosion inhibitor(CI) in most case. However, there are no standards for the Cis performance used in gas gathering and transportation pipelines, which may lead to some gapsbetweentheR&Dscientistsandtheneedsofcorrosioninhibitorusers. Based on the demand of some gas production companies for the CIs, this paper puts forward the performance requirements and corresponding indexes of Cis for natural gas gathering and transportation system, and given some advice on the evaluation method.
The performance requirements, corresponding indexes and laboratory evaluation methods of corrosion inhibitors have a direct impact on the selection of corrosion inhibitors. The performance requirements of corrosion inhibitor for natural gas gathering and transportation pipelines can be summarized into two aspects: corrosion inhibition and usability performance. Corrosion inhibition includes inhibition performance in aqueous phase and in TOL. Usability include compatibility, stability, pouring point, emulsifying tendency, etc. Based on the some different types of gas fields requirements, the performance requirements and corresponding indexes of corrosion inhibitors for wet gas gathering and transportation pipeline are analyzed, and the corresponding performance indicators of corrosion inhibitors for different types of gas fields are proposed. Finally, the commonly applied laboratory evaluation methods in current active standards have been analyzed and summarized, and verified.
Recommended corrosion inhibitor (CI) testing methods and interpretation to assure proper execution of a test program. Associated guidance for CI test program definition testing and management to ensure and improve the integrity of carbon steels applications in our Industry.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Corrosion of pipelines made of carbon steel and exposed to wet hydrocarbons containing CO2 and H2S is a common but serious problem encountered in petroleum industry and its occurrence causes enormousexpense due to production downtime, accidental injuries, and replacement costs. Control and prevent corrosion using chemical treatment (e.g. corrosion inhibitor injection) is one of the most cost-effective solutions and commonly practiced methods to prevent corrosion failures in pipelines in oil and gas industry. Generally speaking, the active corrosion inhibitor (CI) components in commercial CI packages are usually organic, nitrogen-based surfactants such as amines, imidazoline and its derivatives. Due to the amphiphilic nature of surfactants, a good fraction of the injected CI will inevitably go into the oil phase through partitioning and to the oil/water interface.