Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Fe thin films of different thicknesses on quartz substrates were tested in CO2 saturated 3.5%wt. NaCl solutions. The effects of CO2 and thickness on corrosion were studied using optical transmission technique and in situ electrochemical method.
Internal corrosion can occur in the natural gas transmission pipelines when aqueous electrolytes are present. The presence of water results from the condensation of wet gas or liquid water from upstream plant upsets. Dissolved contaminants such as salts, CO2, and H2S make the electrolyte more corrosive. The ability to monitor internal corrosion in natural gas transmission pipelines before it occurs could have a significant impact on preventing methane leaks as well as catastrophic events resulting from corrosion. A recent concept for early corrosion on-set detection involves the use of proxy materials integrated with the optical fiber sensor platform that corrode at a rate which provides insight into the conditions for which pipeline corrosion is expected to occur. Successful realization of this class of sensors requires a detailed understanding of the corrosion behavior of relevant thin film systems. In support of this goal, Fe thin film of different thicknesses (25, 50, 100 nm) on quartz substrates were tested in CO2 saturated 3.5%wt. NaCl solutions at 30 oC. The effects of CO2 and thickness on the corrosion of Fe thin films were studied using optical transmission technique and in situ electrochemical method. The increase in light transmission corresponded to the corrosion of Fe thin films. CO2 accelerated the corrosion of Fe thin films due to the lower pH and promoted corrosion reactions, resulting in a faster increase of light transmission over time than without CO2. While the corrosion rate (CR) increased with the film thickness, the CR of Fe thin films were of the same order of magnitude with the API 5L X65 bulk pipeline material, verifying that Fe thin films can serve as a corrosion proxy when integrated with the optical fiber based sensing platform.
Key words: Corrosion sensor; Fe thin film; Optical sensing; Internal corrosion
A functional test program designed with laboratory conditions suitable for the field corrosive situations and screening the performance of ER and LPR probe types for further application in the field.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Corrosion monitoring technology selection should be based on the challenges and information needs in each individual case. A combination of monitoring technologies will often provide the most reliable information, leading to improved decisions and better corrosion management.
This study collected and analyzed field data to validate the probabilistic model developed previously for predicting internal corrosion threats resulting from condensed water from nominally dry natural gas.