Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Laboratory apparatus enabled simulation of scale precipitation under turbulent emulsion-forming multiphase conditions, with behavior of PbS particles at the oil/water interface and subsequent adhesion onto anti-fouling surfaces measured at a range of polymer concentrations
Deposition of inorganic mineral scale on downhole completion equipment contributes to significant downtime and loss of production within the oil and gas industry. High temperature/high pressure (HT/HP) fields have reported build-up of lead sulfide (PbS) scale as a consequence of reservoir souring; and the resultant reaction between dissociated sulfide anions from hydrogen sulfide (H2S) and heavy metal cations. In this work, laboratory apparatus enabled simulation of scale precipitation under turbulent emulsion-forming multiphase conditions, with behavior of PbS particles at the oil/water interface and subsequent adhesion onto anti-fouling surfaces measured at a range of polymer concentrations. Introduction of polymer sulfide inhibitor (PSI) product to the formation brine at concentrations of 500mg/L reduced overall PbS deposition whilst addition of 5000mg/L further reduced scale crystallisation but resulted in complete emulsification of the light oil phase. The tendency of soluble polymers to act as surfactants led to increased stabilisation of the formed oil in water (o/w) emulsion with heightened PSI concentration. Optical microscope, gravimetric and rheological measurements explained depositional behaviour; whereby enhanced o/w emulsion viscosity and stability due to amphiphilic polymer adsorption onto both PbS scale and oil droplet interfaces resulted in uniform deposition upon all surfaces.
Key words: mineral scale, lead sulfide, Pickering emulsion, anti-fouling, polymeric inhibitor
A comprehensive test program is described quantifying the HISC performance of retrieved superduplex stainless steel subsea components and, comparing the actual performance against the limits derived following DNV RP F112: 2008.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A technology to detect corrosion damage and estimate extent and location within an enclosed volume. This coating condition monitoring (CCM) system is a network of sensors that measure conditions and electrochemical parameters to evaluate the health of coating and substrate for steel plates and tanks.
We evaluated hydrogen embrittlement (HE) susceptibility of three high-strength alloys including a martensitic stainless steel, a high-strength carbon steel, and a duplex stainless steel. HE testing was according to the Incremental Step Loading Technique of ASTM F1624.