Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.

During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.

Search
Filters
Close

Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!

FEM Simulation Analysis Of The Pipe-Casing Under Cathodic Protection

A crossing between buried pipelines and transportation arteries such as railways and highways is a common reality. Nowdays it is ordinary practice, and standards are available for such pratctise1, to protect such pipelines by encasing them in a wider pipe, named Casing. The goal is to protect the carrier pipe providing an outer shell capable of withstanding mechanical stresses and eventual corrosion, without leakage risk. In usual conditions this kind of safety measure should not be necessary, still due to the difficult maintenance and monitoring accessibility below railways and highways it becomes a dependable protection method and device.

Product Number: 51322-17713-SG
Author: Andrea Brenna, Luca Paterlini, Mehdi Attarchi, Marco Ormellese
Publication Date: 2022
$0.00
$20.00
$20.00

In the present study, pipe-casing under cathodic protection is modeled by using FEM. The inner and outer surface of the casing and coating defects at the pipe surface is considered as corrosion and protection interface that follows non-linear polarization behavior. The coating of casing, electrolyte resistivity in pipe-casing space and electrical resistivity between pipe-casing are the main variables. FEM model is approved by tens centimeters of the pipe-casing section experimental setup. After proofing the FEM model, it is scaled up to study more realistic dimensions and broader variable ranges.

The FEM simulations show that when the casing is bare and electrically isolated from the pipe, coating defects of the pipe are easily protected in a wide range of solution resistivity in pipe-casing space. If pipe-casing resistance is reduced to lower than 10 ohms, the cathodic protection nullified, and corrosion could happen on the pipe coating defects. The presence of a coating on the inner surface of the casing will only lead to localization of the corrosion on its defects. Lower solution resistivity leads to an overall flattening of the potential distribution to an average value.

In the present study, pipe-casing under cathodic protection is modeled by using FEM. The inner and outer surface of the casing and coating defects at the pipe surface is considered as corrosion and protection interface that follows non-linear polarization behavior. The coating of casing, electrolyte resistivity in pipe-casing space and electrical resistivity between pipe-casing are the main variables. FEM model is approved by tens centimeters of the pipe-casing section experimental setup. After proofing the FEM model, it is scaled up to study more realistic dimensions and broader variable ranges.

The FEM simulations show that when the casing is bare and electrically isolated from the pipe, coating defects of the pipe are easily protected in a wide range of solution resistivity in pipe-casing space. If pipe-casing resistance is reduced to lower than 10 ohms, the cathodic protection nullified, and corrosion could happen on the pipe coating defects. The presence of a coating on the inner surface of the casing will only lead to localization of the corrosion on its defects. Lower solution resistivity leads to an overall flattening of the potential distribution to an average value.

Also Purchased
Picture for Analysis and Evaluation of Cathodic Protection within a Vapor Corrosion Inhibitor Gel Filled Casing
Available for download

51316-7801-Analysis and Evaluation of Cathodic Protection within a Vapor Corrosion Inhibitor Gel Filled Casing

Product Number: 51316-7801-SG
ISBN: 7801 2016 CP
Author: Len Krissa
Publication Date: 2016
$20.00
Picture for Case Studies in the Assessment of Filled Casings
Available for download

51313-02386-Case Studies in the Assessment of Filled Casings

Product Number: 51313-02386-SG
ISBN: 02386 2013 CP
Author: James Warner
Publication Date: 2013
$20.00