Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Nuclear wastes are stored in large, underground carbon-steel storage tanks at the Hanford site. Carbon steels can become susceptible to localized corrosion. This paper presents the results of ongoing electrochemical investigations to understand the reasons behind the noble drift in the OCP of carbon steel in these waste simulants.
Nuclear wastes are stored in large underground carbon-steel storage tanks at the Hanford site. Most of the liquid wastes are highly alkaline in nature typically with pH values between 12 and 14. Under alkaline conditions carbon steels tend to be passive and undergo relatively slow uniform corrosion. However carbon steels can become susceptible to localized corrosion (e.g. pitting) and stress corrosion cracking (SCC) in the presence of certain aggressive constituents such as chloride and nitrate even in these passive conditions. Susceptibility to pitting and SCC can also be enhanced under conditions of elevated open circuit potential (OCP). In this work long-term coupon immersion testing was conducted on carbon steel in a set of alkaline waste simulants. Large OCP drifts ranging from about +250 mV to +350 mV were observed in several simulants. This paper will present the results of ongoing electrochemical investigations to understand the reasons behind the anodic drift in the OCP of carbon steel in these waste simulants.
Key words: Open-circuit potential, passive film, Mott-Schottky, tank steel, Hanford, radioactive waste
Coastal Lima Peru is an aggressive atmosphere. This reports a field trial of a high-temperature low-sag ACCR (aluminum conductor, composite reinforced) conductor. It contains aluminum and aluminum matrix composite constituents, and uses a greased configuration.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Expansion has increased the risk of AC in pipelines. In this work, calculations of induced AC voltage and current are performed for scenarios involving: HVAC transmission powerline configuration, lateral distance to the transmission pipeline, and parallelism between the transmission lines, soil, and pipeline and coating properties.
Calcium bromide is used in the coal fire power plant industry to help control mercury emissions. The objective of this study was to determine the effect of bromide additions in chloride-rich Wet Flue Gas Desulfurization slurries on the crevice corrosion resistance of commercially-available corrosion resistant alloys.