Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The protection of offshore structures and more specifically of wind turbines from marine corrosion is crucial. In order to improve the operational efficiency and the overall lifetime, protection from this harsh environment is necessary. In this work, it is presented the formation of the polystyrene shell microcapsules using 3-octanoylthio-1-propyltriethoxysilane (NXT) as a corrosion inhibitor carrier that has self-healing properties when combined with a proper catalyst on the metallic substrates. Specifically, the synthesized inhibitor is applied on the Zn85/Al15 arc spray coating on S355 J2+AR metallic substrate. With different concentrations of the applied NXT inhibitor, the corrosion properties of the Zn85/Al15 coatings were measured using Electrochemical Impedance Spectroscopy (EIS), Open Circuit Potential (OCP), Polarization Curve (PC) and Linear Polarization Resistance (LPR). Our results revealed that out of all the used concentrations, 300 ppm provides best protection. Surface morphological characterization exhibits that the coating is porous and corrodes readily, as expected to provide sacrificial protection to the underlying steel, so additional paint layer is necessary to fill the pores and provide a barrier layer. Hence, this work highlights the importance and applications of NXT based corrosion inhibitor with selfhealing properties for metal structures in challenging environments.
Key words: Corrosion, offshore structures, self-healing systems, Zn85/Al15 sacrificial layer
Encapsulation of Linseed Oil & Tung Oil in urea-formaldehyde shells was performed using in-situ polymerization technique. Thin film self-healing coatings with uniform and quick self-healing ability were achieved with microcapsules at concentration of 3 wt%. Anti-corrosive performance was evaluated using immersion test & electrochemical impedance spectroscopy (EIS).
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Self-healing coatings for corrosion protection refer to those with the ability to sense the corrosive environment and to release preloaded inhibitors from the coating matrix by a controlled mode. In this work, SiO2 nanoparticle based polyelectrolyte nanocontainers were fabricated by the LbL method to store corrosion inhibitor BTA.