Important: AMPP System Update February 27 - March 11 – Limited Access to AMPP Digital Services. Act Now to Avoid Disruptions! - Learn More
An operator in North America discovered an internal corrosion failure in a wet gas system directly below the point of injection of a water-soluble corrosion inhibitor (CI). Tests using low shear rotating cage autoclaves and a dual autoclave system were performed as a corrosion screening method.
An operator in North America discovered an internal corrosion failure in a wet gas system directly below the point of injection of a water soluble corrosion inhibitor (CI). Upon further investigation an inconsistency was found between the standard laboratory based carbon steel immersion corrosion rate of the neat water-soluble corrosion inhibitor and the observed corrosion rate based on the field time to failure. For this reason studies were conducted to uncover the discrepancy between the laboratory compatibility test and the observed field corrosion rate in a wet gas system. Tests using low shear rotating cage autoclaves were performed as a corrosion screening method of the neat CI. Additionally it was desired to ensure that the product would travel with the gas and provide corrosion inhibition throughout the entire system. For this reason an additional study was conducted using a dual autoclave system to study the ability of the product to travel with a stream of gas effectively inhibiting the entire gas system. Using these findings from the corrosivity evaluation and the CI transport studies criteria for CI qualification in gas systems are recommended as best practices.
Key words: Wet Gas, Corrosion Inhibitor Qualification, Corrosion Rate, Immersion Test, Neat Chemical Compatibility
Recommended corrosion inhibitor (CI) testing methods and interpretation to assure proper execution of a test program. Associated guidance for CI test program definition testing and management to ensure and improve the integrity of carbon steels applications in our Industry.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Evaluation of corrosion inhibitors for high temperature (HT) upstream oilfield applications can be challenging. A series of laboratory testing methodologies were conducted to further elucidate the factors which affect laboratory corrosion inhibitor performance in high temperature conditions.
This product slowly dissolves for long term scale/corrosion protection. This paper describes the chemical management system that reviewed: statistical interpretation of the results, laboratory methodologies, software simulations to calculate (a) the amount of encapsulated materials (b) frequency of treatment, (c) the economic analysis.