Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.

During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.

Search
Filters
Close

Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!

Developing a Life-Cycle Cost Analysis Framework to Evaluate the Cost-Effectiveness of Hydroelectric

The theoretical framework shown here includes a spreadsheet tool designed to accommodate all unique inputs and accounts for the time-value of money. It offers several output options, including the equivalent uniform annual cost, to aid decision makers in selecting coating systems.

Product Number: 51317--9099-SG
ISBN: 9099 2017 CP
Author: Bobbi Jo Merten
Publication Date: 2017
Industry: Energy Generation
$0.00
$20.00
$20.00

The Bureau of Reclamation utilized protective coatings to maximize reliability and useful life for its water infrastructure. Steel hydroelectric penstock pipes received long-lasting coatings during construction. These coatings are reaching the end of their service life and require recoating. Stricter regulations shifted today’s recoating specifications to less harmful systems, which vary in initial coating costs, periodic maintenance, and service life. For expensive penstock recoating projects, the challenge is in determining the most cost-effective coating system.

A life-cycle cost (LCC) analysis framework was developed for cost comparison of competing coating systems. This analysis is particularly suitable for determining whether the higher initial cost of a coating system is economically justified by reductions in future costs, e.g., maintenance, repair, or replacement costs. The theoretical framework shown here includes a spreadsheet tool designed to accommodate all unique inputs and accounts for the time-value of money. It offers several output options, including the equivalent uniform annual cost, to aid decision makers in selecting coating systems. A sensitivity analysis is also provided to demonstrate the effect of modifying principal variables, such as discount rate and coating service life.

Key words: Cost of corrosion control, life-cycle cost, penstock relining, protective coatings, coatings maintenance, coating selection, theoretical framework

The Bureau of Reclamation utilized protective coatings to maximize reliability and useful life for its water infrastructure. Steel hydroelectric penstock pipes received long-lasting coatings during construction. These coatings are reaching the end of their service life and require recoating. Stricter regulations shifted today’s recoating specifications to less harmful systems, which vary in initial coating costs, periodic maintenance, and service life. For expensive penstock recoating projects, the challenge is in determining the most cost-effective coating system.

A life-cycle cost (LCC) analysis framework was developed for cost comparison of competing coating systems. This analysis is particularly suitable for determining whether the higher initial cost of a coating system is economically justified by reductions in future costs, e.g., maintenance, repair, or replacement costs. The theoretical framework shown here includes a spreadsheet tool designed to accommodate all unique inputs and accounts for the time-value of money. It offers several output options, including the equivalent uniform annual cost, to aid decision makers in selecting coating systems. A sensitivity analysis is also provided to demonstrate the effect of modifying principal variables, such as discount rate and coating service life.

Key words: Cost of corrosion control, life-cycle cost, penstock relining, protective coatings, coatings maintenance, coating selection, theoretical framework

Also Purchased