Search
Filters
Close

Celebrate World Corrosion Awareness Day with 20% off eCourses and eBooks with code WCAD2024 at checkout!

Critical Factors Affecting the Pitting Corrosion Resistance of Additively Manufactured Ni-based Alloy in Chloride Containing Environments

Additive manufacturing can manufacture components that were previously impossible - without compromising strength, ductility and corrosion resistance. The pitting corrosion resistance of a selective laser melted Nickel alloy has been evaluated by electrochemical methods. 

Product Number: 51317--9345-SG
ISBN: 9345 2017 CP
Author: Helmuth Sarmiento Klapper
Publication Date: 2017
$0.00
$20.00
$20.00

Precipitation-hardened nickel-based alloys have a long tradition in oilfield applications. Due to their high strength good ductility and excellent environmentally assisted cracking resistance they have been successfully used for wellhead components artificial lift applications and directional drilling tools particularly in demanding environments where superior corrosion resistance is necessary. Additive manufacturing is breaking into the oil and gas industry with current research efforts focused on demonstrating suitability for manufacturing components that were previously impossible to produce with conventional subtractive manufacturing processes without compromising material properties such as strength ductility and corrosion resistance. The pitting corrosion resistance of a direct metal laser melted Ni-based alloy having a similar chemical composition to alloy UNS N07718 in chloride-containing solutions has been evaluated by electrochemical methods. Results from cyclic potentiodynamic polarization curves demonstrate that with comparable surface quality the additively manufactured Ni-based alloy behaves similar with regard to pitting corrosion susceptibility to UNS N07718 wrought material in chloride containing environments.

Key words: Pitting corrosion, UNS N07718, Selective Laser Melting, Cyclic potentiodynamic tests

Precipitation-hardened nickel-based alloys have a long tradition in oilfield applications. Due to their high strength good ductility and excellent environmentally assisted cracking resistance they have been successfully used for wellhead components artificial lift applications and directional drilling tools particularly in demanding environments where superior corrosion resistance is necessary. Additive manufacturing is breaking into the oil and gas industry with current research efforts focused on demonstrating suitability for manufacturing components that were previously impossible to produce with conventional subtractive manufacturing processes without compromising material properties such as strength ductility and corrosion resistance. The pitting corrosion resistance of a direct metal laser melted Ni-based alloy having a similar chemical composition to alloy UNS N07718 in chloride-containing solutions has been evaluated by electrochemical methods. Results from cyclic potentiodynamic polarization curves demonstrate that with comparable surface quality the additively manufactured Ni-based alloy behaves similar with regard to pitting corrosion susceptibility to UNS N07718 wrought material in chloride containing environments.

Key words: Pitting corrosion, UNS N07718, Selective Laser Melting, Cyclic potentiodynamic tests

Also Purchased