Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
As governments around the world seek to promote the adoption of lower-carbon fuels, credits are available for fuels which satisfy various low-carbon or renewable fuels standards. In the United States, the most common standards discussed include California’s Low Carbon Fuels Standard1 and the US EPA’s Renewable Fuel Standard2. These standards define the acceptable methods (called pathways) for conversion of renewable feeds into consumer fuel products. In order for a producer to be eligible for credits, one of the acceptable pathways must be used. The most common pathway presently being used or considered by most facilities is hydrotreating.
Around the globe, refiners are seeking to convert an increasing portion of existing Hydroprocessing capacity to process renewable feedstocks. Facilities face economic pressure to bring renewables production online quickly, in order to take advantage of the current government incentives (credits) for renewable fuels. Simultaneously, however, materials and corrosion engineers face a lack of data-based guidance regarding the appropriate materials selection and expected damage mechanisms for renewables processing units. This paper discusses many of the major damage mechanisms which are considered most relevant in different areas of the RDU – Renewable Diesel Unit (e.g., feed, hot effluent, cooled effluent, etc.). Significant attention is devoted to fatty acid corrosion in the feed system, and lower-temperature aqueous acid corrosion in the cool effluent system. Specific considerations must be made when an existing unit is converted into an RDU, compared to new construction. The source and precise blend of renewable feeds and the extent (if any) co-processing with conventional petroleum feeds impact the susceptibility to certain damage mechanisms throughout the unit. Upstream pretreatment processes can have unique implications on the expected corrosion in the RDU.
A biofuel can be described as any fuel where bio-based renewables like oils and fats, organic waste, crops like corn or sugar cane, and algae, etc., are used as precursor feedstocks.
Increasingly, the production of biofuels from biomass is very much part of a global impetus for an energy transition to a “carbon neutral” world. The goal is to reduce the carbon footprint and ensure that sustainable energy from bio-based feedstocks realistically lowers reliance on energy produced from fossil fuels.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
In oil refineries, one corrosion issue occurs each week worldwide that leads to a severe incident such as sudden leakages, e.g., resulting from pipe ruptures.[1] These facts emphasize the need for corrosion control in refineries. Corrosion monitoring is one important approach to utilize and can maximize equipment integrity and productivity.
The data produced in this study indicates that there are differences between the ICRI CSP comparator panels and TACM CSP comparator panels. Further, there are differences between taking direct measurements from known surfaces (i.e., the ICRI and TACM CSP panels) and obtaining indirect measurements from an epoxy putty casting of those same known surfaces. Therefore, it is important that the specifier indicate which method is to be used when qualitative or quantitative methods are invoked in the contract documents.