Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
A vessel docked for maintenance is a vessel out of service. For military forces, this significantly affects the readiness of that force, its ability to respond quickly and appropriately to a developing situation. It is for this reason that the United States Navy continues to search for and invest in innovations that improve maintenance turn-around times as well as innovations that keep vessels in service for longer periods of time. In large-scale construction and manufacturing industries such as shipbuilding and naval maintenance, coating removal is an essential but time-consuming process required for constructing and maintaining vessels and other structures.
For military forces, the need for vessels to be docked for maintenance significantly affects fleet availability and the readiness of that force. In shipbuilding and naval maintenance industries, coating removal is an essential but time-consuming process. Grinders, needle guns, or hand tools (such as wire brushes and chisels) are often required for small-scale removals, and each comes with drawbacks such as hazards to operator health, slow removal rate, and damage to substrates. There is a significant need for a new tool that will accelerate small scale coating removal operations without these negative effects. Atmospheric Plasma Solutions Inc. (APS) has developed a single-person-carriable system that uses cold atmospheric air plasma to rapidly remove organic based coatings without altering the surface profile of underlying substrates. This paper details the results of laboratory and in-field testing of this system and highlights its adoption benefits to productivity, worker safety, corrosion control, and fleet readiness.
This paper details a precision process for removal of coatings and preparation of the metal surface underneath for optimal chemical adhesion without damaging the metal surface or the surface profile. A precision process is required for removal of coatings around corroded surfaces, potentially defective structures, or thin-walled ligaments where abrasive removal procedures will damage the substrate. In these cases, removing metal will worsen or cause a defect where replacement is expensive. A precision tool that can safely remove the coating, allow for inspection, and enhance adhesion for recoating is needed. This type of tool would enhance existing repair technologies and eliminate the immediate need for replacement.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
External corrosion on offshore O&G platforms is one of the biggest threats to asset integrity and its management is a large operational expense. Many operators now implement risk-based assessment (RBA) programs where all equipment is assessed periodically with the aim to reduce operational costs while maintaining integrity. Regulatory codes for offshore platforms in the GoM require a visual inspection of all pressure equipment and piping every five-years. In practice, this can equate to approximately 20% of equipment being inspected per year on a large-sized offshore platform (i.e., a topside weight of around 10,000 tons), with a rolling five-year inspection plan to balance the inspection workload evenly through time.
Many pipelines within water and wastewater treatment plants that were constructed within the last 50 years are nearing the end of their service lives. Owners have invested in condition assessments to help them make the difficult decision to repair or replace these pipelines.