Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The demands of cementitious coatings and repair mortars have never been greater. As manufacturers, contractors, and coatings inspectors we are tasked with providing high performance solutions for new projects, or to breathe life back into failing concrete or steel. With new cement technologies, we can meet and exceed our customers’ environmental and financial expectations.
The demands of cementitious coatings and repair mortars have never been greater. As manufacturers, contractors, and coatings inspectors we are tasked with providing high performance solutions for new projects, or to breathe life back into failing concrete or steel. With new cement technologies, we can meet and exceed our customers’ environmental and financial expectations. By increased service life, minimal substrate prep cost, and no VOC’s. These new products have changed how we think about cementitious coatings and repair mortars. Real productivity benefits such as application to damp surfaces, faster recoat times, application to “green” concrete after 24 hours, no re-blasting needed for over-coating, or resistance to positive and negative water pressure, demonstrate new technologies can increase performance AND productivity while reducing environmental impact.
Quality assurance of coatings on steel water pipes commonly relies on tensile pull-off measurements of the coating-steel adhesion, according to ASTM D4541. These tests are performed by adhering a metal ‘dolly’ to the coating with an adhesive, then scoring around the dolly circumference, through the coating down to the steel surface, before recording the stress necessary to pull the dolly (and coating) away from the steel pipe.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Inorganic zinc-rich coatings (IOZ’s) are often considered the gold standard for corrosion protection in atmospheric environments. Frequently, zinc epoxy coatings are considered second best among the most effective coatings for corrosion protection. However, current zinc-rich coating technology is not exempt of limitations, such as poor mechanical properties of the film, rigid environmental application conditions, or the inefficient use of zinc particles for providing galvanic protection. Due to these limitations, a number of asset owners have made the decision not to use zinc-rich coatings to maintain coating systems in marine and offshore environments
Details of a new protocol for evaluating the effectiveness of coatings to reduce corrosion of steel structures is presented in this paper. Basic concepts of accelerated testing specified in American Society for Testing Materials (ASTM) standards and recent research investigations were used to develop a procedure that can provide conclusive results within 2400 hours of exposure as compared to more than 5000 hours in current practices.