Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The creepage of corrosion underneath a coatings film applied to a steel test panel is often used as a performance test for the anti-corrosion properties of a coating system. Underfilm corrosion creep, also sometimes referred as scribe creep in the laboratory environment, is defined as the degree of corrosion emanating away from a scribe line underneath a coating film applied to a steel substrate.
The creepage of corrosion underneath a coatings film applied to a steel test panel is often used as a performance test for the anti-corrosion properties of a coating system. Underfilm corrosion creep, also sometimes referred as scribe creep in the laboratory environment, is defined as the degree of corrosion emanating away from a scribe line underneath a coating film applied to a steel substrate. There are several factors which may affect the degree of corrosion creep, two of these being dry film thickness of the coating and the peak height of the blast profile of a steel substrate. A study was undertaken to compare the effect on corrosion creep of: 1) A coatings film applied at various thicknesses (2 to 10 mils DFT) over a standard abrasive blasted steel surface and 2) A coatings film applied at constant thickness over an abrasive blasted steel surface of various maximum peak heights (peak heights ranging from 1 to 4 mils). The study was conducted using a two-pack epoxy primer containing no corrosion inhibiting pigment. The scribed coatings films were subjected to both continuous neutral salt spray (ASTM B117) and cyclic ammonium sulfate/sodium chloride spray (ASTM G85 Annex A5) for 2000 hours. The test panels were evaluated for underfilm corrosion creepage. The effects of the variations of either the film thickness or of the blast profile characterizations are reported.
This paper details a novel surface preparation process that is suitable for Duplex coating of galvanized steel intended for a variety of atmospheric and embedded service applications. It provides all the properties necessary for excellent coating performance and longevity, including high adhesion, excellent resistance to cathodic disbondment, and resistance to ingress of water, without the drawbacks associated with abrasive blasting, the traditional surface preparation method.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Pull-off adhesion behaviors of 15 coating systems in three groups were studied utilizing test method ASTM D4541. Three groups of coating systems included coating systems with organic or inorganic zinc-rich primers, polymeric polyurea coatings, and overcoating systems applied on an existing coating system.
Pull-off adhesion testing of coatings is commonly used for product testing and qualification as well as quality control / quality assurance. However, initial adhesion values do not necessarily correlate with service life of coatings or their corrosion protection performance. Adhesion of several product chemistries to steel is examined in this study before and after immersion exposure. Results are presented within the context of laboratory corrosion testing in an effort to investigate the significance of adhesion testing in modern lining systems.