Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
High-temperature service places severe constraints on materials selection due to a combination of factors including the formation of oxide films, spallation and volatilization, and deterioration in mechanical properties. Materials selection is principally informed by laboratory testing under simulated conditions of temperature, thermo-mechanical fatigue, and environment chemistry (such as the presence of steam, exhaust gas chemistry, or salts). Models for predicting the high temperature performance of materials a priori are an active area for development, and are currently focused on elements such as predicting oxide formation, microstructure evolution and reduced order models for creep.
High temperature alloys span multiple classes of materials including low alloy steels, stainless steels, nickel-chromium alloys, superalloys, aluminides, and, of more recent interest high entropy alloys, among others. Whereas many high temperature alloys deviate from the parabolic oxide growth law, the parabolic rate constant kp remains a useful indicator of the oxidation susceptibility for a given material. To design new classes of materials, and help with materials selection, it would be useful to directly predict the oxidation rate constants from materials features, such as composition and microstructure. With this goal in mind, parabolic rate constants have been collected from the literature for 75 alloys exposed to temperatures between 900 and 3000oF. Environments incorporated into the analysis include lab air, ambient and supercritical carbon dioxide, supercritical water, and steam. Predictive models for the oxidation rate constant were developed using machine learning and analyzed to provide insights into the leading factors producing corrosion resistance in these materials.
The role of a Coating Inspector has evolved considerably over the past few decades, and the responsibilities have increased over what used to be a rather straightforward job: to verify that surface preparation and coating application meet the project specification requirements. Today there are week-long or multi-week basic and advanced coating inspection courses, specialty courses that are industry-specific (e.g., bridge, nuclear), courses that are substrate-specific (e.g., concrete coatings inspection) and even coating-specific (e.g., inspection of thermal spray coatings).
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Being proactive and performing scheduled coating condition assessments on above ground storage tanks to prevent corrosion is of utmost importance to protect assets. Undetected corrosion can result in product contamination, section loss, create compliance issues resulting in fines levied by governmental agencies, and increase costs of asset replacement. Planned and detailed coating/lining condition assessments can help a tank owner realize the current condition of their assets and maximize life expectancy.
Zinc-rich primers, with zinc dust loadings of 80-85% by weight in the dry film, are often the preferred primer during new construction of assets placed in environments with high atmospheric corrosivity. Coating standards such as SSPC-Paint 20 and ISO 12944 demand that zinc-rich primers contain at least 65% and 80% zinc dust by weight in the final dry film, respectively. Traditional zinc rich primers need this high zinc loading to achieve galvanic protection of steel. New technology allows us to develop zinc primers with a lower content of zinc and/or different zinc morphology than dust to provide similar or better corrosion protection to the steel.