Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
AC interference analyses are an important part of designing an adequate cathodic protection system on a pipeline when collocations with high voltage powerline(s) occur. Modeling software has been developed to create accurate simulations of what is occurring in the real world to create the best mitigation designs for operators. Many of these studies are proposed due to pipeline replacements that update pipelines from coatings with coal tar to fusion bonded epoxy (FBE).
An AC interference study and mitigation design was performed for a pipe replacement project. The project was broken up into multiple phases due to a construction schedule that spans multiple years. This paper is a case study examining the process of performing a piece-wise vs a holistic mitigation design for the pipeline. Designs are based on field data and software modeling. Designs for each approach are compared and their differences and benefits are explored.
AC interference studies have become increasingly popular in an industry where shared right of ways have increased and there has been a better understanding of how AC interacts between pipelines and powerlines that are collocated with each other. While modeling software for AC interference studies have been developed since the 1990s, advancement in AC interference processes have occurred as more has been learned over the years. When performing an AC interference study there are three steps that need to be completed: field data collection, modeling, and mitigation design. Within this paper, we can compare a project from ten years ago to a project from today to understand the developments that have been made over the course of time to improve the way we develop our mitigation designs.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Challenges associated with coordinating the modelling, design, and installation of an alternating current interference and mitigation systems. The project consisted of a 65 kilometer long double circuit 500 kilovolt (kV) overhead transmission in a heavily congested right-of-way corridor with more than 80 pipelines.
This study attempted to exemplify the AC mitigation design practice for an urban gas pipeline by numerical calculation, including AC interference risk evaluation, AC mitigation design and mitigation effectiveness assessment.