Adsorption and film growth of the Benzotriazole (BTA) on a copper (110) surface were investigated by the angle-resolved ultra-violet photoemission (UPS), and scanning tunneling microscope (STM). Coverage dependence of the BTA adsorbed structure on the Cu (110) surface exhibited well-ordered c(4x2)structure by STM image and sharp low-energy electron diffraction (LEED) pattern. Further deposition of BTA on monolayer film, polymerized BTA images were observed while a sharp LEED pattern changed to a c(4x2). In a good agreement with STM results, UPS spectra of BTA film by coverage dependence showed that BTA adsorbed flat up to 1 monolayer (ML), followed by stand-up polymerization above 1 monolayer. It is also suggested that 3-dimensional polymerization exhibited at least 2 BTA layers on Cu surface. The proposed orientation of the first adsorbed BTA layer on Cu (110) surfiace is the “flat adsorption position” based on the atomic scale
resolution of STM and thickness dependence of UPS spectra. This adsorption structure and polymerized multilayer film of the BTA blocks the surface completely. Adsorption sites on the copper surface for attacking
media are unavailable for oxidation reaction.