Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Common scenarios for underground corrosion at foundations of telecommunication towers are explained, and practical methods for corrosion risk assessment and corrosion risk mitigation are briefly reviewed.
Common scenarios for underground corrosion at foundations of telecommunication towers are explained, and practical methods for corrosion risk assessment and corrosion risk mitigation are briefly reviewed. Among different types of corrosion control techniques, cathodic protection is proved to be an efficient and cost-effective method. Accordingly, a new simulation-based approach is proposed to improve the design of cathodic protection systems for foundations of telecom towers, with emphasize on electrochemical characteristics of the service environment and geometry details. Some capabilities of the approach are demonstrated through sample simulations for screw-pile foundations.
Keywords: underground corrosion, cathodic protection, electrochemical simulations, telecommunication structures
Service life of any weapon system depends upon factors that impart long-term durability and robustness to its structure and subsystems, while sustaining its functional properties. The paper describes basic principles and guidelines on corrosion control and rules that could be easily followed to ascertain some specified service life and reduce total ownership costs.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A case history is described involving microbiologically influenced corrosion (MIC) of AISI Type 304L stainless steel piping failure after being in contact with untreated stagnant, low chloride potable water for nine months. Specialized microbiological analysis techniques, including scanning electron and optical cmicroscopy, were used in the failure analysis.
This presentation summarizes the development and expansion of a comprehensive information system for corrosion of metals and alloys in high temperature gases. New insights in analysis of thermochemical data for the Fe-Ni-Cr-Co-C-O-S-N system are being compiled. Corrosion mechanisms emphasized are oxidation, sulfidation, sulfidation/oxidation, and carburization.