Search
Filters
Close

Save 20% on select titles with code HIDDEN24 - Shop The Sale Now

Products tagged with 'destructive examination'

View as
Sort by
Display per page
Picture for Characterization of Stress-Corrosion-Cracking in Plutonium-Bearing Storage Containers
Available for download

Characterization of Stress-Corrosion-Cracking in Plutonium-Bearing Storage Containers

Product Number: 51324-20845-SG
Author: Emmanuel Perez; Roderick E. Fuentes; Michael J. Martínez-Rodríguez; Henry Ajo
Publication Date: 2024
$40.00
The Integrated Surveillance Program, under the Department of Energy, is responsible for the periodic surveillance of storage containers containing plutonium-bearing materials. The container-package consist of a stainless-steel three-layered structure with a convenience can that confines the material, and seal-welded inner and outer cans designed to isolate the materials for up to 50 years with minimal surveillance. The inner-can represents the first layer of material containment, and it should not be breached. During monitoring, corrosion-pitting and suspected stress-corrosion-cracking (SCC) has been identified in some of the inner cans near the weld regions due to the transport of chloride salts and water impurities into the space between the convenience can and the inner can. SCC through wall penetration would result in an undesired increased risk of leakage. An investigation is in progress to identify and characterize corrosion events in the inner-cans to determine the prevalence of corrosion features and the likelihood of a through-wall breach. This document presents a specimen where significant pitting corrosion and cracking was observed in and near the heat affected zone between the can and the lid. Characterization was carried out by Scanning Electron Microscopy (SEM) and 3D-tomography. Tomography was carried out using a Focused Ion Beam (FIB) to mill into the surface of the specimen to map the subsurface topographies of pits and cracks. The study revealed the crack depth and secondary cracks that developed from cracks observed at the surface.
Picture for Destructive Examination Protocol for 3013-Container-Package Storing Plutonium-Bearing Materials
Available for download

Destructive Examination Protocol for 3013-Container-Package Storing Plutonium-Bearing Materials

Product Number: 51324-20811-SG
Author: Roderick E. Fuentes; Michael J. Martínez-Rodríguez; Elizabeth J. Kelly
Publication Date: 2024
$40.00
The 3013-container-package consists of a convenience, inner and outer container and is used for long-term storage of plutonium-bearing materials. A destructive examination (DE) protocol has been developed to examine the container package visually and with microscopic aid to find any corrosion conditions that could result in the loss of the integrity of the container package over its lifetime. The DE protocol contains three main steps: initial container examination, helium (He) leak testing, and detailed imaging and analysis of the inner container closure weld region (ICCWR). The ICCWR has been determined to be bounding, defined as exhibiting worst case conditions for stress corrosion cracking (SCC) of the inner container. To assess SCC in the ICCWR, the inner container lid is cut into quarters and the weld and He-leak testing gasket are removed. Then a citric acid wash is performed to remove adherent chlorides from the ICCWR. The wash is then sent for analysis to determine the concentration of chlorides in the ICCWR. While the analysis for chloride concentration is being performed, the quarter sections are further sectioned into 1/8th subsections by cutting each section in half. These subsections are washed using nitric acid to remove corrosion products. Then each subsection is imaged using a Wide Angle 3-D Measurement System (WAMS). After analysis of microscope images for potential SCC, additional imaging can be performed, including subsurface imaging. After review, a determination is made of whether the container integrity may potentially affect the safe storage of the material.