Search
Filters
Close

Products tagged with 'laboratory performance tests.'

View as
Sort by
Display per page
	Picture for Effect of Curing Time on the Performance of Novolac Internal Tank Coatings - a Realistic Assessment Using Laboratory Testing
Available for download

Effect of Curing Time on the Performance of Novolac Internal Tank Coatings - a Realistic Assessment Using Laboratory Testing

Product Number: 51324-20588-SG
Author: Amal Al-Borno; Moavin Islam; A. Al Hashem; Hasan Sabri
Publication Date: 2024
$40.00
Novolac coating systems are widely used for internal applications in tanks and pressure vessels due to their excellent corrosion resistance under aggressive conditions, their availability, and ease of application. Typically, these coatings require a curing time before putting the coating into service is typically around 7-8 days at (at 20-25o C). During the vessel shutdown, the production schedule sometimes demands compromising the curing process of the lining. This puts a time constraint on the end-user in terms of coating project duration. In response to this challenge, a major oil producing company was interested in finding out if shorter curing times would be suitable to reduce the downtime. The main objective of this study was to conduct a detailed laboratory investigation on the effect of different curing times on the coating performance of four Novolac systems selected from three different manufacturers. The assessment of coating curing involved a series of tests, including Differential Scanning Calorimetry (DSC) and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) analyses, shore-D Hardness, X-cut adhesion, and pull-off adhesion tests. Additionally, standard laboratory coating performance tests were carried out, consisting of water immersion, cathodic disbondment, autoclave in multi-phase environments at elevated pressure and temperature, as well as atlas cell (cold-wall effect) tests. The investigation results demonstrated that even though the coatings were not fully cured, all four coating systems showed acceptable laboratory performance, after just 1 day of curing. This implies that these coatings may be put into service much earlier than the specified curing period of manufacturer which would significantly reduce the project downtime during maintenance. Subsequent field test results (not reported here) confirmed the laboratory findings.