Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Back in 2018, we published a paper on a joint industrial R&D project, during which we performed detailed field measurements on selected pipeline segments in close vicinity to a High Voltage Direct Current (HVDC) transmission line during planned staged fault tests on the power line. Induced voltages on these pipelines were recorded during the HVDC staged fault process, which was conducted by the utility company. The measurement results from these tests were used for further validation or modification of an existing industrial guideline that focuses on the influence of HVDC power lines on metallic pipelines. Verification of future modeling results was another expected outcome of this study.
During operation of DC rail transit systems, DC current will follow the path of least resistance when returning to the Traction Power Substations (TPSS) to complete the electrical circuit. If the track-to-earth resistance (resistance between the train rails and surrounding soil) is not sufficient, current can leak off the LRT track system into the surrounding soil. Metallic facilities such as pipelines in the soil offer lower resistance paths for the current while returning to the TPSS.