Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Black tar-like fouling material was driving frequent shut-downs of a gas plant. Analysis indicated that the nitrogen containing corrosion inhibitor (CI) polymerized with sulfur compounds in a vulcanization process. Testing confirmed the role of the CI in creating this fouling.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Terms such as (green, low toxicity, biodegradability, log Pow or environmentally friendly) are often used interchangeably for product classification, however, their definitions can be very vague.1 Regulatory agencies in various parts of the world employ different methods to classify chemical products and assess potential impacts from their discharge into marine environment. Some practice the hazard-based approach while others use the risk-based approach (Figure 1).
Advanced technology high performance tank linings are often applied by plural spray equipment and occasionally one of the components could be off ratio. Worse still, some well-intentioned field personnel might add more curing agent to speed up the cure, or alter other properties, or may not utilize the entire curing agent portion in a single leg application. This paper investigates the effects of under-cure or over-cure on the performance of two high temperature tank linings by deliberately mis-mixing the two components.
The use of High-Velocity Thermal Spray (HVTS) technology has been well adopted for sour conditions; particularly where low, or locally low, pH conditions result in corrosion and shell thinning. High alloy systems resistant to low pH or acidic conditions are effective at providing a metallurgical barrier, protecting the underlying substrate from material loss. Moreover, HVTS processes have also been employed for mitigating environmentally induced cracking (EIC) in sour service. This paper discusses the suitability and performance of modified HVTS alloys for service where high pH general corrosion or caustic cracking (CSCC) may occur. Extensive testing has been undertaken in both ambient and high pressure and temperature autoclave conditions to better understand material performance in caustic environments. While Nickel Alloy 200 and Monel 400 may be deemed appropriate based on traditional material selections, thermal spray process considerations in the material deposition and the impact of ancillary elements in the process stream, such as halides, render these alloys unsuitable. More complex Nickel alloy cladding systems are evaluated in this study with suitable material recommendations for remediation without the deleterious heat impact of welding or to protect surfaces where heat affected zones have been created and post weld heat treatment is problematic.
HISTORICAL DOCUMENT. Method of comparing the performance of internal pipe coatings by autoclave testing. Comparisons were made under uniform laboratory conditions.
A laboratory test method for determining the extent and rate of corrosion of metals in high-temperature water at temperatures greater than 100°C (212°F) but less than approximately 360°C (680°F). Historical Document 1995
This test method establishes a laboratory method for evaluating the performance of plastic coatings for tubular goods in specific environments at elevated temperatures and pressures by use of an autoclave. Historical Document 1993
Changing conditions in the Oil and Gas industry are yielding greater corrosion protection challenges to the owners and operators of refineries, terminals, pipelines, railcars etc. Internal lining schemes which have traditionally been used for the storage and transport of crude oil and refined fuels may no longer be appropriate. The aggressive nature of crude oil (higher temperatures and more sour nature), high purity refined products and the increased use of biofuels globally necessitate the demand for better linings and more certain test results.