Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
In this study, we retrieved multiple samples from several wells in an onshore oilfield and submitted them for 16S rDNA taxonomic analysis in two different laboratories. The results showed significant differences between laboratories.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Pipeline-D was built in 1997 and was used to transport crude to Gas-Oil Separation Plant-1 (GOSP-1). The pipeline continued operating until it was subjected to intermittent shutdown in 2009 when GOSP-2 was built. As part of the project, 900 meters were added to connect Pipeline-D to GOSP-2.
Types of microorganisms and mechanisms by which MIC occurs on external surfaces of buried, ferrous-based metal pipelines. Testing for the presence of bacteria, research results, and interpretation.
Microbiologically influenced corrosion (MIC) is recognized as a significant corrosion threat to oil and gas pipelines. Biocides are commonly applied as a means of killing microorganisms with the goal of reducing both microbial concentrations and corrosion rates. Laboratory experiments are typically used in selecting an effective biocide prior to application to a pipeline system.