Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Organic coatings are the most used method of corrosion prevention and protection of metallic substratesin many industries. Owners in both the public and private sectors will invest significant resources intotesting coating options to provide the best protection for new and existing products or infrastructure.Often, this testing defaults to some variation of accelerated salt spray testing or outdoor marine exposurewith results being based on aspects such as visual measurements of rust through, corrosioncreepage/undercutting, and blistering.
The service life of current offshore platform coatings are normally less than 10 years. It is very expensive ($100/ft2) to rehabilitate the offshore platform coatings in the field. Therefore, facility owners are very anxious to select the long-life coatings. The candidate coatings are normally tested in the lab following the ISO 12944-91 or the AMPP TM216122 standard.
Accelerated testing of corrosion-resistant coatings is a critical tool used in the development of protective coatings. Tests such as ASTM B117, ISO 12944, ISO 9227, etc. are commonly used to predict the long-term viability of these coatings in exposure times of months rather than years or even decades. While this type of testing gives meaningful results and is essential to the research and development of new technology, results can often be hard to accurately analyze due to the levels of variability inherent to accelerated testing.
The coatings industry has made widespread use of a variety of accelerated test methods to quickly and effectively evaluate coating performance. Such accelerated methods are advantageous for predicting coating system performance where real-time testing is impractical. For example, it is not practical to evaluate coatings in harsh environments where coatings are expected to last for decades when the pace of innovation and new coating development is faster than the test time would need to be. Therefore a variety of test methods exist to evaluate coatings on metal substrates, such as steel or aluminum. Coatings that will be subjected to corrosive environments require testing in environments to simulate the effects of corrosion, typically involving exposure to moderate salt concentration and elevated temperatures for a specified amount of time. Such tests, testing environments, and evaluation methods include ASTM B117,ISO 9227, and ISO 12944, to name a few.