Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
There are several ways to validate the performance of a cathodic protection (CP) system for buried pipelines. Over the years, pipeline networks and their corrosion challenges have become increasingly complicated, not least due to the many sources of both AC and DC interference that affects CP operation. Also, the various measurement techniques that can be applied to test CP effectiveness has increased over the years. Finally, the sheer number of buried pipeline miles has been constantly increasing.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Cathodic protection (CP) is used to prevent external corrosion on underground pipelines. The effectiveness of CP is commonly evaluated by measuring the DC potential (voltage) of the pipeline with respect to a reference electrode located on the surface of the earth above the pipeline. Criteria used to interpret pipeline potential measurements are given by Section 6 of NACE SP-0169-2013 “Control of External Corrosion on Underground or Submerged Metallic Piping Systems.
The -850 mV (CSE) criterion refers to the polarized pipeline potential that is free of any IR-drop. Different methods to obtain the polarized potential exist. Interruption of the CP current will cause the current, I, and thus the IR-drop to become zero and the remaining polarization immediately after the interruption is representative of the polarized potential of the pipeline.