Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Magnesium (Mg) for biodegradable medical implant devices are limited by fast degradation rates of Mg. The study presents alloy design and thermomechancial processing to optimize mechanical and biological properties of a new proprietary Mg alloy. Corrosion profiles were evaluated by in vitro and in vivo studies.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Comparison of 16s ribosomal DNA sequence can show evolutionary relatedness among microorganisms. In this study, 16s rDNA was employed to maximize the population identification of 40 cooling tower samples. This shows that a wide variety of biocides are needed to address microbial populations.
Pressure cycling and ultimate failure pressure testing was conducted on various pipe samples to verify the design formulas meet the specifications and are correct for use in design of field repairs. Results show that use of strain-based design methodologies for composite repair systems is suitable and effective.
The focus herein is on comparing integrity probabilistic analysis approaches with a brief discussion on the existing deterministic approaches. The comparison study utilizes real life application of In-Line-Inspection (ILI) and field measurements of corroded onshore pipelines.
An optical fiber corrosion sensor is developed to monitor the penetration of corrosion pits in steel bars. Simply made by encasing one end of an optical fiber into a steel straw. As corrosion penetrates the steel straw wall, the solution and corrosion products fill inside and contaminate the fiber end surface, resulting in a change in the reflectivity.
It has been documented that improved desalting efficiency reduces the risk of corrosion and vice versa. This paper introduces a new way of using the desalting process to help control overhead corrosion. The end result is the corrosion engineer has a new tool to reduce the risk of salt formation.
Selected Fe- and Ni-based alloys and superalloys have been exposed in 99.995% supercritical carbon dioxide for 500 hours at 750°C and 200 bar. Post exposure examination provided information on corrosion rates, microstructural evolution and the carbon concentration in the exposed materials.
Modern structural biomedical implants utilize titanium alloys. A major mode of failure is aseptic loosening, by the release of particles from the implants, leading to excessive bone erosion. Boron is a promising alloying element that can reduce inflammation, alleviate arthritis, and help with bone growth. This study is to compare corrosion behavior of Ti64 with and without boron,
Nanoparticles are being considered in the development of durable coating systems due to their beneficial electrical and mechanical properties. The present study aims to investigate the corrosion performance of a nanoparticle enriched zinc rich primer (NPE-ZRP) for structural steel in aggressive marine exposure.
Currently UNS R56400 (Ti-6Al-4V; Ti64) is common structural implant material. But it releases metal ions into the body, which are associated with neurological disorders, inflammation, pain and loosening of the implant. Electrochemical methods were used to quantify the stability of two other alloys in a range of physiological media.
In this paper, the cost effectiveness of two different strategies of using two different rebar materials (that is traditional steel and glass fiber reinforced polymer, GFRP) for a concrete bridge beam is compared through a life-cycle cost analysis.
The Houston Ship Channel is a modern engineering feat. Brackish water. Chloride induced corrosion. Subsidence. Change in water levels and exposure conditions. These issues are explored in this paper reviewing methodologies and results of service life modeling from a recent multi-structure assessment by the authors.