Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Crude unit overhead systems contain complex mixtures of hydrocarbon water and various ionic species. Ionic modeling has been used to better understand the rapidly changing phase behavior in this system and to shed some light on some factors which may influence corrosion.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Corrosion in atmospheric column overheads in refineries presents significant challenges to the integrity and efficiency of these critical units. To mitigate the detrimental effects of corrosion, effective monitoring and control strategies are essential. This conference paper introduces an innovative approach to enhance corrosion mitigation in atmospheric column overheads through cloud-based, continuous salt point corrosion monitoring.