Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
In a 1998 study, costs for corrosion in USA were estimated to be about 276 billion US-$. One way to reduce this gigantic amount of money is to use modern stainless steels and nickel alloys with excellent resistance to various forms of corrosion in corrosive environments like seawater, brines, oil and sour gas wells.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Sulfuric and hydrochloric acids are among the most common chemicals produced.in the process industry. Nickel alloys have been a traditional material of choice. This paper will review the alloys available for this service as well as identify the temperature limits and other conditions that should be considered when selecting an alloy.
The alloys used as clad material for this study are members of the so-called “C-family”. It consists of Ni-Cr-Mo alloys, which are known for combining the corrosion resistance of Ni-Cr alloys in oxidizing media with corrosion resistance of Ni-Mo alloys in reducing media. As a result, these materials have proven to be extremely durable in a wide range of highly aggressive media. The development of these materials started in the 1930s with Alloy C. This alloy showed remarkable corrosion resistance in a wide spread of media, low sensitivity for pitting or crevice corrosion and virtual immunity to chloride induced stress corrosion cracking.