Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The effect of post weld heat treatment (PWHT) was studied on a variety of microstructures of the pressure vessel steel (ASTM A516) ranging from the ferrite/pearlite to the tempered bainite obtained by different cooling processes.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Carbon and low-alloy steels in plate form and their welded products may be susceptible to one or more forms of environmental cracking when exposed to wet H2S service conditions. These include, for example, (1) sulfide stress cracking (SSC) of hard zones and welds; (2) hydrogen-induced cracking (HIC) in the parent metal; and (3) stress-oriented hydrogen-induced cracking (SOHIC) in the region adjacent to welds of nominally acceptable hardness. Extensive work has been conducted over many years to understand various fundamental and applied aspects of these phenomena. Experiences in refinery wet H2S operations have directed particular attention to understanding SOHIC and the various metallurgical and environmental parameters that govern its occurrence.
Scope
This standard was prepared to provide a test method for consistent evaluation of pipeline and pressure vessel steels to SOHIC caused by hydrogen absorption from aqueous sulfide corrosion. The test conditions are not designed to simulate any specific service environment. The test is intended to evaluate resistance to SOHIC only, and not to other adverse effects of sour environments such as sulfide stress cracking (SSC), pitting, or mass loss from corrosion.