Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The crevice corrosion of aluminum (99.999 wt. %) in neutral and mildly acidic solutions was investigated. Polarization curves were generated in simulated crevice solutions and potentiostatic crevice corrosion experiments with varying crevice gaps were performed.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Within a few weeks in a 2012 cathodic protection (CP) trial for monopiled windturbine structures in the North Sea, the seawater pH inside the monopile dropped from 8 to 5 and toxic gas (H2S and CO) alarms were energised. This paper explains why.
Seawater pH inside an offshore wind turbine monopole had changed from pH 8 to less than pH 5. And toxic gas alarms were energised. This paper discusses a theory why the pHdropped and solutions to overcome the low pH with the use of aluminium anodes.
Recycling flexible packaging multi-materials such as blister packs and food packaging laminates is critical if we are to reduce the severe environmental effect of plastic waste. The purpose of the experimental work was to develop a series of non-toxic, stable, deep eutectic solvents (DES) and ionic liquids (ILs) for the separation and the recovery of polymer-aluminium laminates. Studies identified a number of DESs and ILs that could be used to successfully delaminate three common aluminium containing packaging laminates thereby enabling complete separation and recovery of the constituent plastic and aluminium layers. Analyses of the corrosion and/or dissolution behaviour of aluminium in the DESs and ILs found such effects to be limited towards the recyclability/uprecyclability of the aluminium.
Pruebas para medir potenciales para determinar si un criterio de protección catódica (SP) se logra en un sitio de prueba en tuberías de acero, fiero, cobre o aluminio, subterráneas o sumergidas.