Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
A methodology was developed to identify and choose the most cost-effective material and also appropriate remedial corrosion inhibition and protection methods by using 4 reputable corrosion prediction models in dry and wet oil & gas pipeline containing CO2 with and without H2S.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The concept of using physics-based models for corrosion monitoring is still new although corrosion monitoring by use of hardware coupons and probes is well recognized. This paper describes the application in downstream related to crude unit overhead and demonstrates how the monitoring concept can be used and its benefits.
Naphthenic acids and sulfur species in crude oil cause severe corrosion of the steel equipment of crude distillation units in oil refineries.1–3 Because of rapidly changing oil economics, the refineries have inclined towards cheaper “opportunity crudes”, but the high levels of corrosive species, mainly naphthenic acids and organosulfur compounds, in these crudes would reduce the life of the equipment, and also increase the risk of catastrophic failure.3 So the opportunity crudes are often blended with the crudes containing lower levels of corrosive species; this decreases overall concentration of corrosive species and the corrosion rates.4,5 However, corrosion rates are not simply proportional to the concentrations of naphthenic acids and sulfur species that are present in the crude oil.4,5 Without accurate estimation of corrosion rates by crude oils or their “blends”, carbon steel equipment needs to be constructed with higher wall thickness for safety; if still insufficient, high alloy steels are required.