Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
MIC is a problem in the oil and gas industry due to seawater injection. Biocides lead to resistance by microbes over time. In this work, D-amino acids were used to enhance the tetrakis (hydroxymethyl) phosphonium sulfate (THPS) biocide against a tough field biofilm consortium.
MIC is a major threat to oil pipelines because it reduces the service life of pipelines and can potentially leads to catatrophes. Microbial communities commonly associated with pipeline corrosion include sulfate reducing bacteria (SRB), acid producing bacteria (APB), acetogenic bacteria and methanogens. In a field environment, SRB, APB and other microbes often live in a synergistic biofilm consortium. Sessile SRB are often the main culprit of MIC. They can utilize sulfate as the terminal electron acceptor and various carbon sources and elemental iron as electron donors. Corrosive APB biofilms are also a contributing factor in an acidic environment because they release H+ which is an oxidant.